CURRICULUM-VITAE

Dr. DEVESH KUMAR

Associate Professor
Department of Applied Physics
School for Physical Sciences
Baba Saheb Bhimrao Ambedkar University
Vidya Vihar, Raebareli Road,
Lucknow (U. P.) 226025 India
dkclcre@yahoo.com

RESEARCH INTEREST

- Studies of the reactivity of organic substrates with metalloenzymes or biomimetic catalysts using quantum chemistry, electronic structure and spectra, quantum mechanics/molecular mechanics.
- Simulations of intermolecular interactions in mesogens and biological molecules

SUMMARY

- Successfully resolved a controversy that was arisen from two different sets of
 experiments by two research groups on the mechanism of C-H hydroxylation by
 cytochrome P450 enzymes. Furthermore, the work provided answers and
 explanations to the nature of catalysis by cytochrome P450 enzymes
- Showed that the chemo-selectivity of a reaction can change when an electric filed along one of the principle components of the system is applied. An electric field along the FeO bond preferentially leads to C-H hydroxylation, while in the opposite direction the C=C epoxidation pathway is favored
- Described the formation of CpdI (Fe^{IV}=O) species in the non-heme system Bleomycin, which is an anti-cancerous drug

CURRENT POSITION

Aug. 2011 – Present	Associate Professor,	Department of	Applied Physics,
	School for Physical	Sciences, Baba	Saheb Bhimrao
	Ambedkar University,	, Vidya Vihar,	Raebareli Road,
	Lucknow (U. P.) 22602	5 India	

RESEARCH EXPERIENCE

April 2009 – July 2011	Ramanujan Fellow, Indian Institute of Chemical Technology, Hyderabad (A. P.), India					
	Group Leader: Dr. G. Narahari Sastry					
June 2006 – March 2009	Postdoctoral Fellow, The Max-Planck-Institut für					
	Kohlenforschung, Mulheim an der Ruhr, Germany Mentor: Professor Walter Thiel					
May 2002 - May 2006	Postdoctoral Fellow, The Hebrew University of Jerusalem					
	Israel					
	Mentor: Professor Sason Shaik					
July 2001 - March 2002	Research Associate, Center for Liquid Crystal Research and					
•	Education, Nagarjuna University, Nagarjuna Nagar, India					
	Mentor: Professor V.G.K.M. Pisipati					

EDUCATION

- Ph.D., Physics, DDU Gorakhpur University, Gorakhpur, India, 2001 Thesis Title: "Study of Conformation and Interactions in Mesogens" Superviser: Professor Mihir Roychoudhury
- M.Sc., Physics, University of Gorakhpur, Gorakhpur, India, 1989
- B.Sc., Physics, Chemistry, Mathematics, L. N. Mithla University, Darbhanga, India, 1984

Date of Birth: 5 June 1965

PUBLICATIONS (see list of publications for details):

Review Articles

Research Papers

Editorials

Book Chapter

Two

Book

One

Journal wise break up:

Journal	IF	No.	Journal	IF	No.
Chem. Rev.	35.957	2	Inorg. Chem.	4.657	1
Acc. Chem. Res.	18.203	1	J. Biol. Inorg. Chem.	3.415	3
Angew. Chem. Int. Ed.	11.829	3	J. Phys. Chem. C	4.224	1
J. Am. Chem. Soc.	8.580	20	Biochemistry	3.226	1
Nat. Prod. Rep.	9.202	1	J. Chem. Info.Mod.	3.882	1
Cemm. Comm.	5.787	2	J. Inog. Biochem.	3.252	2
Chem. Eur. J.	5.382	3	J. Phys. Chem. A	2.899	6
Faraday Discuss.	3.700	1	Eur. J. Inorg. Chem.	2.941	2
Phys. Chem. Chem. Phys.	4.116	1	Other Journals	<2	12
J. Phys. Chem. B	3.471	3			

Total impact factor : 417.3

Average impact factor : 6.3

Citations : 1851

h-index : 25

SUPERVISION EXPERIENCE

PostDoc supervision at the Hebrew University of Jerusalem:

- 1. Dr. Etienne Derat (2004 2005)
- 2. Dr. Hajime Hirao (2004 2005)
- 3. Dr. Kyung-Bin Cho (2005 2006)
- 4. Dr. Yohann Moreau (2005 2006)

PhD student supervision:

Chunsen Li (2003 – 2005)
 Holly N. Frye (2005 – 2006)

Undergraduate student supervision:

- 1. Tal Katzav (2004 2006)
- 2. Saloni Sahani (2007)

MAJOR PROJECTS

- 1. Quantum mechanical/Molecular Mechanics (QM/MM) Studies of the Properties and the Reactivities of Human Isoforms of Cytochrome P450. Cost **Rs. 72.35 lakhs**, sponsored by *Department of Science and Technology*, *New Delhi* for 2009 2014.
- 2. Quantum Mechanical/Molecular Mechanical (QM/MM) studies of the properties and the reactivities of tetrahydropterin-dependent amino acid hydroxylases. **Rs. 37.98** lakhs, sponsored by *Department of Science and Technolgy, New Delhi* for 2010 2013.
- 3. QM/MM, MD Simulations and Computer Aided Drug Design Approaches on 5-Lipoxygenas, sponsored by *Dst-Conacyt, Mexico S&T Cooperation Programme* for 2011 2013.

ADMINISTRATIVE EXPERIENCE

Nov. 1999 - July 2001 Research cum Statistical Officer, SC/ST Cell, DDU

Gorakhpur University, Gorakhpur, India

Aug. 1995 - Nov. 1999 Coordinator (Computer Courses), Department of Adult,

Continuing Education and Extension, DDU Gorakhpur

University, Gorakhpur, India

INVITED TALKS

- "Workshop on Computer Aided Drug Design & Discovery (CAD3) 2011" jointly organized by NIPER, Hyderabad, April 17, 2011
- "3rd International Symposium on Drug Metabolism and Pharmacokinetics (DMPK) Applications toward Drug Discovery and Development" jointly organized by Bristol –Myers Squibb, NIPER, S. A. S. Nagar (Mohali), Feb 11, 2011
- "Workshop on Experimental Tools for Characterization of Novel Materials", organized by NCEMP and NASI The National Academic of Sciences, Allahabad, Feb. 09, 2011.
- Department of Medicinal Chemistry, NIPER, S. A. S. Nagar (Mohali), Aug. 30-Sept03, 2010.
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India. August 06, 2010.
- Centre for Modelling Simulation and Design, University of Hyderabad, Hyderabad, India. August 03, 2010.
- Department of Physics, DDU Gorakhpur University, Gorakhpur, India. April 12, 2006, March 4, 2008, July 2009, Feb. 2010, July 2010.
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India. April 12, 2007
- Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India. March 23, 2007

AFFILIATIONS

- The World Association of Theoretical and Computational Chemists (WATOC)
- Society of Biological Inorganic Chemistry (SBIC) #19400
- Indian Biophysics Society (IBS) #L441

EDITOR FOR SCIENTIFIC JOURNALS:

- Editor, Journal of Computational Biology and Bioinformatics Research.
- Associate Editor, International Research Journals of Biochemistry and Bioinformatics(IRJBB)
- Assistant editor, *Nanoscale Research Letters* (IF 2.89).
- Guest editor for special issue of *Journal of Physical Chemistry A 112(50)* (2008) on "Sason Shaik Festschrift".
- Guest editor for special issue of *Journal of Physical Chemistry A 113(43)* (2009) on "Walter Thiel Festschrift".

REVIEWER FOR SCIENTIFIC JOURNALS:

- Journal of The American Chemical Society
- Journal of Computational Chemistry
- Journal of Chemical Theory and Computation
- The Journal of Physical Chemistry A
- The Journal of Physical Chemistry B
- QSAR & Combinatorial Science
- Nanoscale Research Letters
- Chemical Biology & Drug Design
- Journal of Biological Inorganic Chemistry
- Journal of Molecular Modeling
- Materials Sciences and Applications
- Chemical Physics Letters
- ChemPhysChem

OTHERS:

- Worked as a Resource Person in "*Refresher Course on Foundations of Theoretical Methods in Physics*" organised by Department of Physics and Academic Staff College, University of Gorakhpur from Jan. 31 to Feb. 21, 1994.
- Worked as Evaluator cum Designer/ Compositor in the Concurrent Evaluation of Total Literacy Campaign under National Literacy Mission (Government of India) programme in districts Azamgarh and Mau (U.P.) India
- Worked as Chief Evaluator in the Concurrent Evaluation of Total Literacy Campaign under National Literacy Mission (Government of India) programme in districts Meerut (U. P.) India

Devesh Kumar

List of Publication of Dr. Devesh Kumar

A. **Book** Total **1**

- 1. *"Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature"*, *The Royal Society of Chemistry, U.K.*, Eds. S. P. Visser, **D. Kumar**, (2012) in preparation (ISBN: 978-1-84973-181-2).
- B. Research Articles, Reviews & Book Chapters Total 68
- 68. Nonheme Ferric Hydroperoxo Intermediates Are Efficient Oxidants of Bromide Oxidation, A. K Vardhaman, C. V. Sastri^{*}, **Devesh Kumar**^{*}, and Sam P. de Visser^{*}, **ChemComm 2011**, accepted
- 67. Oxidative properties of a nonheme Ni(II)(O₂) complex: Reactivity patterns for C–H activation, aromatic hydroxylation and heteroatom oxidation, Reza Latifi, Laleh Tahsini, **Devesh Kumar***, G. Narahari Sastry, Wonwoo Nam* and Sam P. de Visser*, *ChemComm 2011*, accepted
- 66. Drug metabolism by Cytochrome P450: A tale of multistate reactivity, **D. Kumar**, "Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature", Eds. S. P. Visser, D. Kumar, The Royal Society of Chemistry, U.K., (2012) Ch. 9 pp 281-329.
- 65. Structure and dynamics of DNA minor groove binders: A computational study, Hemant Kumar Srivastava, Mukesh Chourasia, **Devesh Kumar**, G. N. Sastry*, *J. Chem. Info.Mod.* **2011**, *51*, 558-571.
- 64. Quantum mechanics/molecular mechanics study on the oxygen activation process in cysteine dioxygenase enzymes, **D. Kumar***, Walter Thiel, S. P. de Visser*, **J. Am. Chem. Soc. 2011**, 133, 3869-3882.
- 63. The axial ligand effect on substrate sulfoxidation by iron(IV)-oxo porphyrin cation radical oxidants: Predictive patterns of barrier heights and rate constants, **D. Kumar***, G. N. Sastry, S. P. de Visser*, **Chem. Eur. J. 2011**, 17, 6196-6205.
- 62. Water as biocatalyst in cytochrome P450; **D. Kumar**, A. Altun, S. Shaik & W. Thiel; **Faraday Discussions 2011**, *148*, 373-383
- 61. Steric Factors Override Thermodynamic Driving Force in Regioselectivity of Proline Hydroxylation by Prolyl-4-hydroxylase Enzymes, Baharan Karamzadeh, **D. Kumar***, G. N. Sastry, S. P. de Visser*, *J. Phys. Chem. A* 2010, 114; 13234-13243.
- 60. What Factors Influence the Rate Constant of Substrate Epoxidation by Compound I of Cytochrome P450 and Analogous Iron(IV)-Oxo Oxidants.; **D. Kumar***, Baharan Karamzadeh, G. Narahari Sastry, S. P. de Visser*; **J. Am. Chem. Soc. 2010**,132, 7656–7667.
- 59. Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: a quantum mechanical/ molecular mechanical study; M. Altarsha, T. Benighaus, **D. Kumar** & W. Thiel; **J. Biol. Inorg. Chem. 2010**, 15, 361-372.
- 58. *P450 Enzymes: Their Structure, Reactivity and Selectivity, Modeled by QM/MM Calculations*; S. Shaik, S. Cohen, Y. Wang, H. Chen, **D. Kumar** & W. Thiel; *Chem. Rev.* **2010**, *110*, 949-1017.
- 57. Effect of Porphyrin Ligands on the Regioselective Dehydrogenation versus Epoxidation of Olefins by Oxoiron(IV) Mimics of Cytochrome P450; D. Kumar*, L. Tahsini, S. P. de Visser*, H. Y. Kang, S. J. Kim, and W. Nam*; J. Phys. Chem. A 2009, 113, 11713-11722.
- 56. Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: Search for an Fe(I) Oxidation State; C. S. Porro, **D. Kumar** & S. P. de Visser; **Phys. Chem. Chem. Phys. 2009**, 11, 10219-10226.
- 55. A Tribute to Walter Thiel; Michael Bühl & D. Kumar; J. Phys. Chem. A 2009, 113, 11455-11456.
- 54. QM/MM Study of the Second Proton Transfer in the Catalytic Cycle of the D251N Mutant of Cytochrome P450cam; M. Altarsha, W. Dongqi, T. Benighaus, D. Kumar & W. Thiel; J. Phys. Chem. B 2009, 113, 9577-9588.

- 53. How is the Reactivity of Cytochrome P450cam Affected by Thr252X Mutation? A QM/MM Study for X = Serine, Valine, Alanine, Glycine; M. Altarsha, T. Benighaus, **D. Kumar** & W. Thiel; **J. Am. Chem. Soc. 2009**, 131, 4755-4763.
- 52. Multi-reference Ab Initio QM/MM Study on Intermediates in the Catalytic Cycle of Cytochrome P450_{cam}; A. Altun, **D. Kumar**, F. Neese & W. Thiel; **J. Phys. Chem. A 2008**, 112, 12904-12910.
- 51. A Tribute to Sason Shaik; S. P.de Visser*, E. Derat* & **D. Kumar***; *J. Phys. Chem. A* **2008**, *112*, 12721-12723.
- 50. A Valence Bond Modeling of Trends in Hydrogen Abstraction Barriers and Transition States of Hydrogen Reactions Catalyzed by Cytochrome P450 Enzymes; S. Shaik, **D. Kumar** & S. P. de Visser; *J. Am. Chem. Soc.* 2008, 130, 10128-10140.
- 49. Theoretical Study of N-Demethylation of Substituted N,N-Dimethylanilines by Cytochrome P450: The Mechanistic Significance of Kinetic Isotope Effect Profiles; Y. Wang, **D. Kumar**, C. Yang, K. Han, & S. Shaik, **J. Phys. Chem. B 2007**, 111, 7700-7710.
- 48.A Density Functional Study into the Factors that Influence the Chemoselectivity of Toluene Hydroxylation by Cytochrome P450 enzyme?; C. Hazan, D. Kumar, S. P. de Visser, & S. Shaik, Eur. J. Inorg. Chem. 2007, 2966-2974.
- 47. The Electronic Structure of Reduced Phosphovanadomolybdates and the Implications on Their Use in Catalytic Oxidation Initiated by Electron; H. Hirao, **D. Kumar**, H. Chen, R. Neumann, & S. Shaik, *J. Phys. Chem. C* 2007, 111, 7711-7719.
- 46. Reactivity patterns of cytochrome P450 enzymes: Multifunctionality of the active species and the two states two oxidants conundrum, S. Shaik, H. Hirao & **D. Kumar**; **Natural Product Reports 2007**, 24, 533-552.
- 45. Reactivity of High-Valent Iron Oxo Species in Enzymes and Synthetic Reagents: A Tale of Many States; S. Shaik, H. Hirao & **D. Kumar**, *Acc. Chem. Res.* **2007**, *40*, 532-542.
- 44. Singlet Diradical Character of an Oxidized Ruthenium Trithiolate: Electronic Structure and Reactivity; C. A. Grapperhaus, P. M. Kozlowski, **D. Kumar**, H. N. Frye, K. B. Venna, & S. Poturovic, **Angew. Chem. Int. Ed. 2007**, 119, 1-5.
- 43. Formation of the Active Species of Cytochrome P450 Using Iodosylbenzene: A Case for Spin Selective Reactivity; K.-B. Cho, Y. Moreau, **D. Kumar**, D. Rock, J. P. Jones & S. Shaik, **Chem. Eur. J. 2007**, 13, 4103 4115.
- 42.On the Identity and Reactivity Patterns of the "Second Oxidant" of the T252A Mutant of Cytochrome P450cam in the Oxidation of 5-Methylenenylcamphor; H. Hirao, **D. Kumar** & S. Shaik, **J. Ing. Biochem. 2006**, 100, 2054-2068.
- 41. Bleomycin: A Poulos-Kraut Mechanism of O-O Activation for the Formation of a Compound I Type Species; D. Kumar, H. Hirao, S. Shaik & P. M. Kozlowski, J. Am. Chem. Soc. 2006, 128, 16148-16158.
- 40. Characterization of Manganese(V) Oxo Polyoxometalate Intermediates and their Properties in Oxygen Transfer Reactions; A. M. Khenkin, **D. Kumar**, S. Shaik & R. Neumann, *J. Am. Chem. Soc.* 2006, 128, 15451-15460.
- 39. Seeking for New Catalysts for Monooxygenations Made from Polyoxometalate: An Iron-Oxo derivative of the Lindqvist Anion; E. Derat, **D. Kumar**, R. Neumann & S. Shaik, *Inorg. Chem.* **2006**, *45*, 8655-8663.
- 38. Ferromagnetic Bonding: High Spin Copper Clusters (***Cu_n; n = 2-12) Devoid of Electron Pairs But Possessing Strong Bonding; S. P. de Visser, **D. Kumar**, M. Danovich, N. Nevo, D. Danovich, P. K. Sharma, W. Wu & S. Shaik, *J. Phys. Chem. A* 2006, 110, 8510-8518.

- 37. Two-State Reactivity in Alkane Hydroxylation by Non-Heme Iron-Oxo Complexes; H. Hirao, **D. Kumar**, Lawrence Que Jr. & S. Shaik, *J. Am. Chem. Soc.* **2006**, *128*, 8590-8606.
- 36. In silico design of a mutant of cytochrome P450 containing selenocysteine; S. Cohen, **D. Kumar** & S. Shaik, **J. Am. Chem. Soc. 2006,** 128, 2649-2653.
- 35. Gauging the Relative Oxidative Powers of Compound I, Ferric-Hydroperoxide and the Ferric-Hydrogen Peroxide Species of Cytochrome P450 Towards C-H Hydroxylation of a Radical Probe Substrate; E. Derat, **D. Kumar**, H. Hirao, & S. Shaik, **J. Am. Chem. Soc. 2006**, 128, 473-484.
- 34. Kinetic Isotope Effect is A Sensitive Probe of Spin State Reactivity in C-H Hydroxylation of N,N-Dimethyl Aniline by Cytochrome P450; C. Li, W. Wu, **D. Kumar**, & S. Shaik, **J. Am. Chem. Soc. 2006**, 128, 394-395.
- 33. The High-Valent Iron-Oxo Species of Polyoxometalate, If can be Made, Will be a Highly Potent Catalyst for C-H Hydroxylation and Double Bond Epoxidation; **D. Kumar**, E. Derat, A. M. Khenkin, R. Neumann & S. Shaik, *J. Am. Chem. Soc.* 2005, 127, 17712-17718.
- 32. New Feature in the Catalytic Cycle of Cytochrome P450: A "Surprise" Intermediate en-Route to Compound I?; D. Kumar, H. Hirao, S. P. de Visser, J. Zheng, D. Wang, W. Thiel & S. Shaik, J. Phys. Chem. B 2005, 109, 19946-19951.
- 31. Two States and Two More in the Mechanisms of Hydroxylation and Epoxidation by Cytochrome P450; H.Hirao, **D. Kumar**, W. Thiel & S. Shaik, *J. Am. Chem. Soc.* 2005, 127, 13007-13018.
- 30. A Theoretical Perspective on Structure and Mechanisms of Cytochrome P450 Enzymes; S. Shaik, D.Kumar, S. P. de Visser, A. Ahmet & W. Thiel, Chem. Rev. 2005, 105, 2279-2328. Recognized as a Hot Paper by Thomson ISI's Essential Science Indicators Nov. 2006.
- 29. Sulfoxidation Mechanisms Catalyzed by Cytochrome P450 and Horseradish Peroxidase Models: Spin-Selection Induced by the Ligand; **D. Kumar**, S. P. de Visser, P. K. Sharma, H. Hirao & S. Shaik, **Biochemistry 2005**, 44, 8148-8158.
- Theory Favors A Stepwise Mechanism of Porphyrin Degradation By a Ferric Hydroperoxide Model of Active Speices of Heme Oxygenase; D. Kumar, S. P. de Visser, & S. Shaik, J. Am. Chem. Soc. 2005, 127, 8204-8213.
- 27. Theoretical Investigation of C-H Hydroxylation by (N4Py)Fe^{IV}=O²⁺: An Oxidant More Powerful than P450?; **D. Kumar**, H. Hirao, Lawrence Que Jr. & S. Shaik, **J. Am. Chem. Soc. 2005**, 127, 8026 -8027.
- 26. The Intrisic Axial Ligand Effect on Propene Oxidation by Horseradish Peroxidase versus Cytochrome P450 Enzymes; **D. Kumar**, S. P. de Visser, P. K. Sharma, E. Derat & S. Shaik, **J. Biol. Inorg. Chem. 2005**, 10, 181-189.
- 25. Multi-state Reactivity in Styrene Epoxidation by Compound I of Cytochrome P450: Mechanisms of Products and Side Product Formations; **D. Kumar**, S. P. de Visser & S. Shaik, **Chem. Eur. J. 2005,** 11, 2825–2835.
- 24. Computer Generated High Valent Iron-Oxo and Manganese-Oxo Species with Polyoxometalate Ligands-How do they Compare with the Iron-Oxo Active Species of Heme Enzymes? S. P. de Visser, **D. Kumar**, R. Neumann & S. Shaik, **Angw. Chem. Int.** Ed. **2004**, 43, 5661-5665.
- 23. One oxidant, many pathways: A theoretical perspective of monoxygenation mechanisms by cytochrome *P450* enzymes; S. Shaik, S. P. de Visser, D. Kumar, *J. Biol. Inorg. Chem.* **2004**, *9*, 661-668.
- 22. An External Electric Field Will Control the Selectivity of Enzyme-Like Bond Activations; S. Shaik, S. P. de Visser & D. Kumar, J. Am. Chem. Soc. 2004, 126, 11746-11749.
- 21. A Predictive Pattern of Computed Barriers for C-H Hydroxylation by Compound I of Cytochrome P450; S. P. de Visser, **D. Kumar**, S. Cohen, R. Shacham & S. Shaik, *J. Am. Chem. Soc.* **2004**, *126*, 8362-8363.

- 20. The "Rebound Controversy": An Overview and Theoretical Modeling of the Rebound Step in C-H Hydroxylation by Cytochrome P450; S. Shaik, S. Cohen, S. P.de Visser, P. K. Sharma, **D. Kumar**, S. Kozuch, F. Ogliaro & D. Danovich, *Eur. J. Inorg. Chem.* 2004, 207-226.
- 19. How Do Aldehyde Side Products Occur During Alkene Epoxidation by Cytochrome P450? Theory Reveals a State-Specific Multi-State Scenario Where the High-Spin Component Leads to All Side Products; S. P. de Visser, **D. Kumar**, & S. Shaik, *J. Inorg. Biochem.* 2004, 98, 1183-1193.
- 18. Oxygen Economy of Cytochrome P450: What is the Origin of the Mixed Functionality as a Dehydrogenating-Oxidase Enzyme Compared with its Normal Function?; **D. Kumar**, S. P. de Visser, & S. Shaik, **J. Am. Chem. Soc. 2004**, 126, 5072-5073.
- 17. Porphyrin Traps its Terminator! Concerted and Stepwise Porphyrin Degradation Mechanisms Induced by Heme-Oxygenase and Cytochrome P450; P. K. Sharma, R. Kerkokiants, S. P. de Visser, **D. Kumar** & S. Shaik, **Angew. Chem. Int. Ed. 2004**, 43, 1129-1132.
- Radical Clock Substrates, their C-H Hydroxylation Mechanism by Cytochrome P450 and Other Reactivity Patterns:; What Does Theory Reveal About the Clocks'- Behavior?; D. Kumar, S. P. de Visser, P. K. Sharma, S. Cohen & S. Shaik, J. Am. Chem. Soc. 2004, 126, 1907-1920.
- 15. Active Species of Horseradish Peroxidase (HRP) and Cytochrome P450: Two Electronic Chameleons; S. P. de Visser, S. Shaik, P. K. Sharma, **D. Kumar** & W. Thiel, **J. Am. Chem. Soc.** 2003, 125, 15779-15788.
- 14. How Does Product Isotopes Effect Prove the Operation of a Two-State 'Rebound' Mechanism in C-H Hydroxylation by Cytochrome P450?; **D. Kumar**, S. P. de Visser & S. Shaik, **J. Am. Chem. Soc. 2003**, 125, 13024 13025.
- 13. Odd-Even Effect in Homologous Series of 4-cyano-4'-alkylbiphenyl (nCB): Role of Anisotropic Pair Potential; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Crystal Research Technology 2002**, 37(8), 881-889.
- 12. Order of a Thermotropic Mesogen: HCCPP- A Statistical Study Based on Quantum Mechanics and Computer Simulation; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Mol. Cryst. Liq. Cryst. 2002**, 378, 65-75.
- 11. Molecular Ordering of a Nematogen at Phase Transition Temperature A Theoretical Study; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati, **Phase Transition 2002**, 75(6), 621-629.
- 10. Nematogenic Behaviour of 5OCB in a Dielectric Medium at Phase Transition Temperature- A Statistical Analysis; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Crystal Research Technology 2002**, 37(6), 602-611.
- 9. Odd-Even Effect in Homologous Series of 4-alkylbenzoic acid (nBA): Role of Anisotropic Pair Potential; D.P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Z. Naturforsch-A** 2002, A **57a** (4), 189-193.
- 8. Molecular Ordering of a Nematogen at Phase Transition Temperature A Theoretical Study; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Phase Transition 2002, 75(4)**, 413-421.
- 7. Statistical Study of Molecular Ordering in a Nematogenic Nompound- A Computational Analysis; D.P.Ojha, **D. Kumar** & V.G.K.M. Pisipati; *Crystal Research Technology* **2002**, *37(1)*, 83-91.
- 6. Semactoganic Behaviour of 70.6 at it's Phase Transition Temperature A Computational Analysis; D.P.Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Z. Naturforsch-A 2001**, **56a(12)**, 873-878.
- 5. Molecular Orgamization in a Nematogen:PBPCN- A Computational Analysis based on Quantum Mechanics; D. P. Ojha, **D. Kumar** & V.G.K.M. Pisipati; **Z. Naturforsch-A 2001**, **56a(11)**, 730-734.
- 4. Theoretical Model for Liquid Crystalline Behaviour; N. K. Sanyal, M. Roychoudhury & **D. Kumar**; "Condensed Matter Physics: Liquid and Solid States"; S.K. Srivastava, K. Furukawa & S. Baer eds, chapter **8**, INDIAS publication (2000).
- 3. *Nematogenic Behaviour Study of Liquid Crystals*; M. Roychoudhury & **D. Kumar**; *Materials Sci. Forum Transtec* Publ., Switzerland **1996**, **222-223**, 13-16.

- 2. Study of Molecular Ordering in a Liquid Crystal: 4'-nitrophenyl 4-hexyloxy benzoate (NPHB); D. P. Ojha, **D.Kumar** & M. Roychoudhury; **Proc. National Acad. Sci, India 1995**, **65 A**, 115-120.
- 1. A Comparative Study of Crystal Packing vs Conformational Energy of n-acetyl-2,3-di dehydro Proline; M.Roychoudhury & **D.** Kumar; International Journal of Quantum Chemistry 1995, 55, 71-74.